Linear perturbations of quaternionic metrics

نویسندگان

  • Sergei Alexandrov
  • Boris Pioline
  • Frank Saueressig
  • Stefan Vandoren
چکیده

We extend the twistor methods developed in our earlier work on linear deformations of hyperkähler manifolds [1] to the case of quaternionic-Kähler manifolds. Via Swann’s construction, deformations of a 4d-dimensional quaternionic-Kähler manifold M are in one-to-one correspondence with deformations of its 4d+ 4-dimensional hyperkähler cone S. The latter can be encoded in variations of the complex symplectomorphisms which relate different locally flat patches of the twistor space ZS , with a suitable homogeneity condition that ensures that the hyperkähler cone property is preserved. Equivalently, we show that the deformations of M can be encoded in variations of the complex contact transformations which relate different locally flat patches of the twistor space ZM of M, by-passing the Swann bundle and its twistor space. We specialize these general results to the case of quaternionic-Kähler metrics with d + 1 commuting isometries, obtainable by the Legendre transform method, and linear deformations thereof. We illustrate our methods for the hypermultiplet moduli space in string theory compactifications at treeand one-loop level.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear perturbations of quaternionic metrics II. The quaternionic-Kähler case

We extend the twistor methods developed in our earlier work on linear deformations of hyperkähler manifolds [1] to the case of quaternionic-Kähler manifolds. Via Swann’s construction, deformations of a 4d-dimensional quaternionic-Kähler manifold M are in one-to-one correspondence with deformations of its 4d+ 4-dimensional hyperkähler cone S. The latter can be encoded in variations of the comple...

متن کامل

Linear perturbations of quaternionic metrics I. The Hyperkähler case

We study general linear perturbations of a class of 4d real-dimensional hyperkähler manifolds obtainable by the (generalized) Legendre transform method. Using twistor methods, we show that deformations can be encoded in a set of holomorphic functions of 2d + 1 variables, as opposed to the functions of d + 1 variables controlling the unperturbed metric. Such deformations generically break all tr...

متن کامل

Quaternionic Kähler and Spin(7) Metrics Arising from Quaternionic Contact Einstein Structures

We construct left invariant quaternionic contact (qc) structures on Lie groups with zero and non-zero torsion and with non-vanishing quaternionic contact conformal curvature tensor, thus showing the existence of non-flat quaternionic contact manifolds. We prove that the product of the real line with a seven dimensional manifold, equipped with a certain qc structure, has a quaternionic Kähler me...

متن کامل

Explicit Quaternionic Contact Structures and Metrics with Special Holonomy

We construct explicit left invariant quaternionic contact structures on Lie groups with zero and non-zero torsion, and with non-vanishing quaternionic contact conformal curvature tensor, thus showing the existence of quaternionic contact manifolds not locally quaternionic contact conformal to the quaternionic sphere. We present a left invariant quaternionic contact structure on a seven dimensio...

متن کامل

Balanced HKT metrics and strong HKT metrics on hypercomplex manifolds

A manifold (M, I, J,K) is called hypercomplex if I, J,K are complex structures satisfying quaternionic relations. A quaternionic Hermitian hypercomplex manifold is called HKT (hyperkähler with torsion) if the (2,0)-form Ω associated with the corresponding Sp(n)-structure satisfies ∂Ω = 0. A Hermitian metric ω on a complex manifold is called balanced if d∗ω = 0. We show that balanced HKT metrics...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008