Linear perturbations of quaternionic metrics
نویسندگان
چکیده
We extend the twistor methods developed in our earlier work on linear deformations of hyperkähler manifolds [1] to the case of quaternionic-Kähler manifolds. Via Swann’s construction, deformations of a 4d-dimensional quaternionic-Kähler manifold M are in one-to-one correspondence with deformations of its 4d+ 4-dimensional hyperkähler cone S. The latter can be encoded in variations of the complex symplectomorphisms which relate different locally flat patches of the twistor space ZS , with a suitable homogeneity condition that ensures that the hyperkähler cone property is preserved. Equivalently, we show that the deformations of M can be encoded in variations of the complex contact transformations which relate different locally flat patches of the twistor space ZM of M, by-passing the Swann bundle and its twistor space. We specialize these general results to the case of quaternionic-Kähler metrics with d + 1 commuting isometries, obtainable by the Legendre transform method, and linear deformations thereof. We illustrate our methods for the hypermultiplet moduli space in string theory compactifications at treeand one-loop level.
منابع مشابه
Linear perturbations of quaternionic metrics II. The quaternionic-Kähler case
We extend the twistor methods developed in our earlier work on linear deformations of hyperkähler manifolds [1] to the case of quaternionic-Kähler manifolds. Via Swann’s construction, deformations of a 4d-dimensional quaternionic-Kähler manifold M are in one-to-one correspondence with deformations of its 4d+ 4-dimensional hyperkähler cone S. The latter can be encoded in variations of the comple...
متن کاملLinear perturbations of quaternionic metrics I. The Hyperkähler case
We study general linear perturbations of a class of 4d real-dimensional hyperkähler manifolds obtainable by the (generalized) Legendre transform method. Using twistor methods, we show that deformations can be encoded in a set of holomorphic functions of 2d + 1 variables, as opposed to the functions of d + 1 variables controlling the unperturbed metric. Such deformations generically break all tr...
متن کاملQuaternionic Kähler and Spin(7) Metrics Arising from Quaternionic Contact Einstein Structures
We construct left invariant quaternionic contact (qc) structures on Lie groups with zero and non-zero torsion and with non-vanishing quaternionic contact conformal curvature tensor, thus showing the existence of non-flat quaternionic contact manifolds. We prove that the product of the real line with a seven dimensional manifold, equipped with a certain qc structure, has a quaternionic Kähler me...
متن کاملExplicit Quaternionic Contact Structures and Metrics with Special Holonomy
We construct explicit left invariant quaternionic contact structures on Lie groups with zero and non-zero torsion, and with non-vanishing quaternionic contact conformal curvature tensor, thus showing the existence of quaternionic contact manifolds not locally quaternionic contact conformal to the quaternionic sphere. We present a left invariant quaternionic contact structure on a seven dimensio...
متن کاملBalanced HKT metrics and strong HKT metrics on hypercomplex manifolds
A manifold (M, I, J,K) is called hypercomplex if I, J,K are complex structures satisfying quaternionic relations. A quaternionic Hermitian hypercomplex manifold is called HKT (hyperkähler with torsion) if the (2,0)-form Ω associated with the corresponding Sp(n)-structure satisfies ∂Ω = 0. A Hermitian metric ω on a complex manifold is called balanced if d∗ω = 0. We show that balanced HKT metrics...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008